
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-3, March- 2015]

ISSN: 2349-6495

Page | 44

Enhanced Fault Tolerant Based Job Scheduling With Load
Balancing Approach in Computational Grid

Dr. P. Suresh1, Dr. P. Keerthika 2

1 Department of Information Technology, Kongu Engineering College, Perundurai, Erode-638052, Tamilnadu, India

2 Department of CSE, Kongu Engineering College, Perundurai, Erode-638052, Tamilnadu, India.

Abstract— Grid computing is a process of applying the
resources of many computers in a network to a single
problem at the same time usually to a scientific or
technical problem that requires a great number of
computer processing cycles or access to large amounts of
data. Resource management and scheduling are key grid
services. The two main techniques that are most suitable
to cope with the dynamic nature of the grid are load
balancing and job replication. The fault tolerant
scheduling algorithm namely MinRC (Minimum
Replication cost and Completion time) is developed. It
employs peer-to-peer fail over strategy such that each
resource is a backup of another neighbour or partner
resource in the grid system. The load balancing algorithm
is developed to find the load of each resource and also to
choose the resource which has minimum load. The fault
tolerant scheduling is integrated with load balancing
algorithm and developed a Performance Enhanced fault
tolerant scheduling algorithm (PE_MinRC). In order to
improve system flexibility, reliability and save system
resource, fault-tolerant load balancing algorithm employs
passive replication scheme. The main objective is to
arrive at job assignments that could achieve maximum
resource utilization, minimum response time and a well
balanced load across all the resources involved in a grid.
This approach gives relatively low overhead and robust
performance against resource failures and inaccuracies
in performance prediction information.

Keywords— Fault tolerance, Grid computing, Job
scheduling, Load balancing, Replication.

I. INTRODUCTION
Grid computing discipline involves the actual networking
services and connections of a potentially unlimited
number of ubiquitous computing devices within a grid. It
requires the use of parallel processing software that can
divide a program among as many as several thousand
computers and restructure the results into a single solution

of the problem. It is an infrastructure of resource sharing.
It is a technology for using enormous amounts of
computing power and data storage, a possibility to share
expensive computational resources.
Grid is a parallel and distributed system in which resource
spread across multiple administrative domains are able to
select, share and integrate based on common rules they
accept[1]. It aims ultimately to turn the global network of
computers into a vast computational resource. Grid
systems are classified into two categories: compute and
data grids. In compute grids, the main resource that is
being managed by the resource management system is
compute cycles (i.e. processors); while in data grids the
focus is to manage data distributed over geographical
locations. The type of grid system it is deployed in affects
the architecture and the services provided by the resource
management system. In this paper, we consider fault
tolerant scheduling and balancing application load for a
computational grid by taking into account grid
architecture, computer heterogeneity, resource
unpredictability and communication delay.
Fault tolerance is the ability of a system to perform its
function correctly even in the presence of faults [2]. A
fault tolerant service detects errors and recovers from
them without participation of any external agents, such as
humans. Errors are detected and corrected and permanent
faults are located and removed while the system continues
to deliver acceptable services. Strategies to recover from
errors include roll-back, which implies bringing the
system to a correct state saved before the error occurred,
roll forward, i.e. bringing the system to a fresh state
without errors, or compensation, i.e. masking an error, in
situations when the system contains enough redundancy
to do that.
The fault tolerance makes the system more dependable. In
a broad sense, fault tolerance is associated with reliability,
with successful operation, and with the absence of
breakdowns. A fault-tolerant system should be able to
handle faults in individual hardware or software
components, power failures or other kinds of unexpected
disasters and still meet its specification. Fault tolerance is
needed because it is practically impossible to build a
perfect system. The majority of fault-tolerant designs
have been directed toward building computers that
automatically recover from random faults occurring in
hardware components.

Resource failures (processors/links) may frequently occur
in grid systems and have an adverse effect on
applications. Consequently, there is an increasing need for
developing techniques to achieve fault tolerance [3]. In

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-2, March- 2015]

ISSN: 2349-6495

Page | 45

multiprocessor systems, fault tolerance can be provided
by scheduling replicas of jobs on different processors.
There are two main approaches to replication as described
below.

(1) Active replication: This technique is based on space
redundancy i.e. multiple copies of each job are mapped on
different processors, which are run in parallel to tolerate a
fixed number of failures. With such a technique, no fault
detection mechanism is required.

(2) Passive replication: The main idea of this technique is
that a backup copy of a job is activated only if a fault
occurs while executing its primary copy. It does not
require fault diagnosis and is guaranteed to recover all
affected jobs by processor failure. In such a scheme, only
two copies of the job are scheduled on different
processors (space exclusion) and time exclusion. This
approach is very useful for grid where fault diagnosis is
very difficult.
Load balancing is a computer networking methodology to
distribute workload across multiple computers to achieve
optimal resource utilization, maximize throughput,
minimize response time and to avoid overload. A typical
distributed system involves a large number of
geographically distributed worker nodes which can be
interconnected and effectively utilized in order to achieve
performance not ordinarily attainable on a single node [4].
To minimize the time needed to perform all tasks, the
workload has to be evenly distributed over all nodes
which are based on their processing capabilities. The load
balancing problem is closely related to scheduling and
resource allocation. It is concerned with all techniques
allowing an evenly distribution of the workload among
the available resources in a system. The main objective of
a load balancing consists primarily to optimize the
average response time of applications; this often means
the maintenance the workload proportionally equivalent
on the whole system resources.
Load balancing algorithms can be classified into two
categories: static [5] or dynamic [6]. In static load
balancing algorithms allocate the tasks of a parallel
program to workstations based on either the load at the
time nodes are allocated to some task, or based on an
average load of our workstation cluster [7]. The decisions
related to load balance are made at compile time when
resource requirements are estimated. The scheduling is
carried out according to a predefined approach. In
dynamic load balancing algorithms make changes to the
distribution of work among workstations at run-time; they
use current or recent load information when making
distribution decisions. Multi computers with dynamic
load balancing allocate/reallocate resources at runtime
based on no a priori task information, which may
determine when and whose tasks can be migrated. As a
result, dynamic load balancing algorithms can provide a
significant improvement in performance over static
algorithms [8]. Thus, a dynamic approach can be made
adaptive to changes in system parameters such as job
arrival rate, CPU processing rate, loads and
communication bandwidth between computers.

II. RELATED WORK
The grid environment consists of dynamic and
heterogeneous resources. Resource changes with time due
to addition of new resource or any of the existing resource
leaving the grid environment. Due to uneven job arrival
patterns and unequal computing capabilities, some
resources in the grid environment get overloaded or some
resources get under loaded or some resources remain idle
[9]. The occurrence of the resource failures is high due to
the resource characteristics. Both resource failures and
load balancing degrade the system performance.

Qin Zheng et al [10] proposed an algorithm for
scheduling independent jobs. For all processors where the
primary is scheduled on, boundary schedules within the
time window are considered and replication cost is
compared. It does not overlap with any primary schedule
or non over-loadable backup schedule. The boundary
schedule which has minimum replication cost. The
algorithm first considers boundary schedules of the time
window. Then, all existing schedules within or
overlapping with the time window are examined one by
one and their respective boundary schedules are
considered.
Balasangameshwara and Raju [11] proposed a fault
tolerant scheduling policy to handle failures that can
happen in a grid environment. If a resource shuts down
manually, it sends a notice message to its backup,
neighbour and partner resources before shutting down. If
a resource fails suddenly without any notice then this job
replication strategy is used. The backup is scheduled for
each primary. In case of failure, the identity of the backup
and notice message regarding failure of primary is sent to
all neighbour and partner resources. If a job successfully
completed, the primary sends a release message to the
backup it had reserved such that the released slot of
backup can be reserved by other primary.
Yang et al [12] proposed a hybrid load balancing policy
which integrates static and dynamic load balancing
techniques. Essentially, a static load balancing policy is
applied to select effective and suitable node sets. This will
lower the unbalanced load probability caused by
assigning tasks to ineffective nodes. When a node reveals
the possible inability to continue providing resources, the
dynamic load balancing policy will determine whether the
node in question is ineffective to provide load
assignment. The system will then obtain a new
replacement node within a short time, to maintain system
execution performance.
 Syed Nasir et al [13] proposed a multilevel hybrid
scheduling algorithm. It is based on master/slave
architecture. It uses the round robin allocation strategy for
job distribution among the slave processors and the
hybrid scheduling is used on each slave processor for
computation. The main idea is to execute jobs optimally
with minimum average waiting, turnaround and response
time defined variable. It executes the longest job thus
avoiding starvation. It supports true scalability.

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-2, March- 2015]

ISSN: 2349-6495

Page | 46

Payli et al [14] proposed a dynamic and a distributed
protocol. The grid is partitioned into a number of clusters.
Each cluster has a coordinator to perform local load
balancing decisions and also to communicate with other
cluster coordinators across the grid to provide inter-
cluster load transfers. The distributed protocol uses the
clusters of the grid to perform local load balancing
decision within the clusters and if this is not possible,
load balancing is performed among the clusters under the
control of cluster heads called the coordinators.
Hao et al [15] used a dynamic, distributed load balancing
scheme for a grid environment which provides deadline
control for tasks. Initially the resources check their state
and make a request to the grid broker according to the
change of state in load. Then, the grid broker assigns
gridlets between resources and scheduling for load
balancing under the deadline request. The experimental
results shows that this algorithm can reduce the make
span, improve the finished rate of the gridlet and reduce
the submitted time.

III. PROPOSED MERTHODOLOGY
The fault tolerant scheduling policy called MinRC for
independent jobs is designed. It handles failure that can
happen in a grid environment. If a resource shuts down
manually, it sends a notice message to its backup,
neighbour and partner resources before shutting down. If
a resource fails suddenly without any notice then this job
replication strategy is used. It employs peer-to-peer fail-
over strategy such that each resource is a backup of
another neighbour or partner resource in the grid system.
The backup is scheduled for each primary and they are
located on two different resources. MinRC is triggered
by the arrival of a job for scheduling to the primary. The
primary sends a replica of the job to the designated
backup. In case of failure, the identity of the backup and
notice message regarding failure of primary is sent to all
neighbour and partner resources. If a job successfully
completes, the primary sends a release message to the
backup it had reserved such that the released slot of
backup can be reserved by other primary. PE_MinRC
efficiently considers the system reliability and resource
utilization.

3.1 Boundary Schedules

Scheduling the backup of job where its start time and
finish time collide with boundaries of the interval or
boundaries of over-loadable backup schedules is referred
to as boundary schedule. Replication cost is defined as the
actual percentage of time needed to be scheduled for the
backup besides all overloaded periods with existing
backups. Replication cost to schedule backup of job ji on
resource ci is defined as,

Ri
R(j) = (te(j)) – t0(j)) / te(j) (1)

where,
Ri

R(j) -Replication cost of job j.

te(j) - Deadline of job j..

t0(j) - Amount of time that backup of job ji

can overload with other backups.

3.2 Scheduling Backups

For all neighbour and partner resources besides the one
where the primary is scheduled on boundary schedules
within the time window are considered and their
replication cost is compared. The boundary schedule
which has minimum replication cost is chosen

RR(j i) = min {Ri(j i)}, 1 ≤ i ≤ M (2)

where M represents the neighbour and partner resources
for the primary ci. In case a tie happens, the boundary
schedule which can complete earliest is selected. A
schedule is eligible if it is within the time window and
does not overlap with any primary schedule or non-over
loadable backup schedule. Once a backup site is assigned
to execute the job in case of failure, it will not accept any
backup requests from other sites until the time limit
expires or the job assigned to its primary site completes.
It attempts to schedule backup with minimum replication
cost.

3.3. Load balancing

PE_MinRC algorithm is used to balance the load
efficiently and also to improve the performance of
backups. This work is motivated by the need of efficient
algorithms which takes into account grid architecture,
computer heterogeneity and communication delay and
resource unpredictability. The main objective is to arrive
at job assignments that will achieve minimum response
time and minimum load difference between heaviest and
lightest resource even during resource failure there by
resulting in better resource utilization. This mainly
focused on designing a dynamic fault tolerant load
balancing algorithm.

Load of resource is defined as the total length of

the jobs divided by the current resource capacity. Before
scheduling the job, expected load of the resource can be
calculated by adding the no of the jobs with particular
resource capacity.

 Load is calculated based on the formula

 (3)

where,

 MI = Length of jobs
When tasks are allocated to resource, current load is
calculated and the tasks are transferred to the
neighbourhood resource, when resource becomes over
loaded. It achieves better resource utilization even during
heavy job arrival rates by considering underloaded
resource in grid. This is the first to collectively consider

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-2, March- 2015]

ISSN: 2349-6495

Page | 47

performance- enhanced fault tolerant load balancing and
grid scheduling with minimum cost. It is used in
estimating the system parameters and in proactive job
migration.
PE_MinRC manage the backup even during heavy job
arrival rates. It is flexible approach in dealing with the
changes that happen in the grid and better resource
utilization even during resource failures. It aims to
minimize the variations in loads on all machines.
Efficiency of decision making is highly reliable and
moderate communication cost.

IV. EXPERIMENTAL RESULT
GridSim tool is used to evaluate the performance in
simulation environment. It is a java based discrete-event
toolkit that enables users to model and simulate the
characteristics of grid resources and networks with
different configurations. In fig.1 cost is considered with
the number of jobs (gridlets). The cost value is high in
MinRC algorithm due to overloaded resources. But in
PE_MinRC, cost is less even during heavy job arrival
rates by considering the non overloaded resources.
Therefore it results in better utilization and minimum
cost. The result is shown below.

Fig.1 Cost vs. Number of jobs

V. CONCLUSION
 Fault tolerance and load balancing are crucial issues for
the efficient operation in grid computing environments for
distributing the jobs. The designed algorithm considers
fault tolerance with minimum replication cost and
dynamic load balancing for efficient decisions. It results
in better resource utilization even during resource
failures. Issues related to security have not been
considered in this research. In the future, it is planned to
explore the potential of load balancing models by
embedding them into real world grid environments.

REFERENCES

[1] Foster, I., Kesselman, C. (eds.), “The Grid: Blueprint
for a Future Computing Infrastructure,” 2nd
Edition, Morgan Kaufmann, San Mateo 2004.

[2] J.H. Abawajy, “Fault-Tolerant Scheduling Policy for
Grid Computing Systems,” Proc. Int’l Parallel and
Distributed Processing Symp. (IPDPS), 2004.

[3] Anne Benoit, Mourad Hakem and Yves Robert,
“Multi-criteria Scheduling of Precedence Task
Graphs on Heterogeneous Platforms,” The computer
journal, vol. 53, no. 6, 2010.

 [4] Qin Zheng, Chen-Khong Tham, Bharadwaj
Veeravalli, “Dynamic Load Balancing and
Pricing in Grid Computing with Communication
Delay,” J Grid Computing , vol. 6, pp. 239–253,
2008.

[5] Kalim Qureshi, Attiqa Rehman and Paul Manuel,
“Enhanced GridSim Architecture with Load
Balancing,” Springer Journal of Super Computing,
LLC 2010.

[6] Dhakal, S., Hayat, M.M., Pezoa, J.E., Yang, C.,
Bader, and D.A.:,”Dynamic load balancing in
distributed systems in the presence of delays: a
regeneration theory approach,” IEEE Trans. Parallel
Distrib. Syst., vol. 18, no. 4, pp. 485–497, 2007.

[7] Yun-Han Lee, Seiven Leu, Ruay-Shiung Chang,
“Improving Job Scheduling Algorirthms in a Grid
Environment,” Future Generation Computer
Systems, vol. 27, pp. 991-998, 2011.

[8] Kameda.H. , Li, J., Kim, C., Zhang, Y.,”Optimal
Load Balancing in Distributed Computer Systems,”
Springer, London ,1997.

[9] Karimi, Faraneh Zarafshan, Adznan.B. Jantan, A.R
Ramli, M.Iqbal, B.Saripan, “A New Fuzzy
Approach for Dynamic Load Balancing Algorithm,”
IJCSIS, vol. 6, no. 1, pp 01-05, 2009.

[10] Qin Zheng, Bharadwaj Veeravalli and Chen-Khong
Tham, “On the Design of Fault-Tolerant Scheduling
Strategies Using Primary-Backup Approach for
Computational Grids with Low Replication Costs”,
IEEE Transactions on Computers, vol.58, no.3,
2009.

[11] Balasangameshwara.J and Raju.N, “Performance -
Driven Load balancing with Primary-Backup
Approach for Computational Grids with Low
Communication Cost”, IEEE Transactions on
Computers, Vol.35, 2012.

[12] Li.Y, Yang.Y and Zhou, “A hybrid load balancing
strategy of sequential tasks for grid computing
Environments”, Future Generation Computer
Systems, Vol.25, pp. 819-828,2009.

[13] Syed Nasir Mehmood Shah, Ahmad Kamil Bin
Mahmood, Alan Qxley, “Dynamic Multilevel
Hybrid Scheduling Algorithms for Grid
Computing”, Future Generation Computer
Systems,Vol.27, pp. 1035-1046, 2011.

[14] Payli R.U, Erciyes.K and Dagdeviren.O, “Cluster
- Based Load Balancing Algorithms for Grids”,
International Journal of Computer Networks &
Communications (IJCNC), Vol.3, No.5, pp. 253-
269, 2011.

[15] Li Y, Lan Z, “ A survey of load balancing in grid
computing”, In: Lecture notes in computer science,
vol. 3314. Springer, Berlin, Heidelberg, pp 280–285,
2005.

